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In a recent study by Yeung & Parkinson (1997), a wake width was proposed which
allowed the bluff-body potential-flow model by Parkinson & Jandali (1970) to be
extended to include the flow around an oblique flat plate. By incorporating this wake
width in the momentum equation originally derived by Eppler (1954) for separated
flow, the drag of the plate is related to its inclination and base pressure through
a simple analytical condition. It allows the base pressure, which is usually treated
as an empirical input, to be determined theoretically and thus the model becomes
self-contained. Predictions of the base pressure, drag and width of wake are found
to be in reasonable agreement with the experimental data. When applied to the
symmetrical flow around a wedge of arbitrary vertex angle, similar agreement with
experimental measurements is obtained as well. It is also demonstrated that this
condition is compatible with the free-streamline models by Wu (1962) and Wu &
Wang (1964) such that the corresponding predictions are in good agreement with
experiment.

1. Introduction
Two distinct regions are generally identified when considering the flow around a

bluff body. Upon flow separation, a wake is formed immediately downstream of the
body. Low pressure, reversed flow and vortex shedding are some of its characteristics.
The region of flow external to the wake is by and large inviscid and potential-flow
models for such a region have been reported in the literature.

The earliest potential model for separated flow is the free-streamline theory by
Kirchhoff and Helmholtz for the flow normal to a flat plate. The discrepancy between
the estimated drag coefficient of 0.88 and the experimental value about 2.0, as indicated
in Prandtl & Tietjens (1934), is mainly due to the substantial reduction in pressure
behind the plate not modelled in the theory. By specifying the separation velocity,
which is linked to the base pressure coefficient, and allowing it to remain constant
along the initial portions of the free streamlines until they become parallel to the free
stream, the notched hodograph model by Roshko (1954a) gives a better estimate of
2.130, as compared to 2.13 measured by Fage & Johansen (1927, hereafter referred
to as FJ). Moreover, this potential-flow model by Roshko provides an understanding
of the vortex shedding mechanism in the wake. By taking the theoretical wake width
and the experimental separation velocity as the characteristic length and velocity
respectively, Roshko (1954b) proposed a wake Strouhal number, S∗ = 0.164, which is
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expected to be universal for all bluff-cylinder wakes. Furthermore, by equating this
wake width to the width of the vortex street from von Kármán’s formula for the
drag, Roshko (1954b, 1955) derived a solution dependent only on one experimental
measurement, ε, the ‘fraction of shear layer vorticity which goes into individual
vortices’. As deduced from the theory, the value of base pressure is the same for
all cylinders having the same value of ε. With a suitable average value for the base
pressure (Cpb = −0.96) chosen, the calculated drag coefficients and Strouhal numbers
for the circular cylinder, 90◦ wedge and normal flat plate compare well with values
obtained experimentally in a range of Reynolds number.

When considering the fully developed wake flow and cavity flow past an inclined
flat plate, Wu (1962) generalized Roshko’s free-streamline theory by assuming that
the complex potential and velocity at the end points of a constant-pressure region
bounded by the free streamlines had respectively the same values. The model yields
the exact solution in a closed form for the whole range of wake pressure and is
applicable to both wake flows in one-phase media and cavity flows in water because
the prediction is in remarkably good agreement with experimental observations by
FJ and others. Extensions to obstacles of arbitrary profiles such as wedges, flapped
hydrofoils and inclined circular arc plates at an arbitrary cavitation number were
later reported in Wu & Wang (1964), and the theory is in good agreement with
the experimental results. Other independent investigations of the free-streamline
theory are found in Mimura (1958), Woods (1961), and Abernathy (1962). Wu (1972)
subsequently provided a review of cavity and wake flows with a detailed account on
both physical and theoretical aspects. Perspectives on bluff-body aerodynamics, and
developments in the understanding of bluff-body flows are recently highlighted in
articles by Roshko (1993) and Bearman (1998), respectively.

The wake-source model by Parkinson & Jandali (1970, hereafter referred to as
PJ) utilized a different potential-flow approach through the use of conformal trans-
formations and mathematical singularities. In addition to being simpler than the
other theories, reliable estimates of drag and pressure distribution upstream of flow
separation for two-dimensional bodies including the flat plate normal to the flow,
90◦-wedge, and circular and elliptic cylinders have been reported. For example, the
pressure distribution on the flat plate is indistinguishable from Roshko’s prediction
and the calculated drag coefficients agree with measured values within 0.3% for the
flat plate and 6.5% for the circular cylinder at subcritical, transcritical and critical
Reynolds numbers. The wake-source model subsequently found applications in other
studies. For instances, it was adopted in a free-streamline theory for bluff bodies
attached to a plane wall by Kiya & Arie (1972) and was incorporated in an ana-
lytical model by Güven, Patel & Farell (1977) for high-Reynolds-number flow past
rough-walled circular cylinders. Bearman & Fackrell (1975) developed a numerical
method incorporating some of the ideas of PJ to calculate the potential flow exter-
nal to two-dimensional and axisymmetric bluff bodies. A version of the wake-source
model to include the far-wake displacement, originally proposed by Woods (1961), was
reported by Kiya & Arie (1977). Recently, an analytical expression for the wake width,
which was suitably deduced from the physical evidence based on well-documented
experimental data from Abernathy but without additional empirical parameters, was
proposed by Yeung & Parkinson (1997, hereafter referred to as YP) to extend the
wake-source model to steady separated flow around an inclined flat plate. Based on
such a wake width and the separation velocity deduced from the base pressure mea-
surements by Abernathy, the modified Strouhal number is found to be independent
of the inclination.
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The success of the above-mentioned inviscid models relies on the base pressure,
which is always specified experimentally because the flow in the wake is not modelled.
The purpose of this study is to demonstrate how this empirical input might be
eliminated such that these potential-flow models become self-contained. It is found
that if the wake width proposed in YP is utilized in a momentum equation for
bluff bodies originally proposed by Eppler (1954), then the drag is related to the
base pressure and the inclination of the plate. Independently, the wake-source model
can be used to provide another relationship among the drag, base pressure and
inclination. As a result, the base pressure is simply found by solving simultaneously
a system of nonlinear algebraic equations at any particular inclination. Results show
that the predicted base pressure, drag and wake width agree reasonably well with the
experimental data of FJ for the inclined flat plate and the measurements of Simmons
(1977) for the wedge of arbitrary vertex angle. This relationship, when incorporated
in the free-streamline models by Wu (1962) and Wu & Wang (1964), produces similar
good agreements.

2. Flat plate
Following the formulation in YP for the flow around an inclined flat plate of length

c, the complex velocity in the transform plane ζ, which contains a unit circle centred
at the origin, is given by

W (ζ) = V

{
1− 1

ζ2
+

iΓ

2πVζ
+

Q1

πV (ζ − exp [iδ1])
+

Q2

πV (ζ − exp [iδ2])
− Q1 + Q2

2πVζ

}
,

(1)

where V is the free-stream speed in the ζ-plane. 2Q1 and 2Q2 are the two surface
sources added to the circle at angular locations δ1 and δ2 to create two stagnation
points, which are 180◦ apart on the circumference, coinciding with the leading and
trailing edges of the plate in the z-plane where z = x + iy. Γ is the strength of a
vortex added to the centre of the circle to provide non-zero lift around the flat plate.
The inclination α with respect to the free stream of speed U is related to V by

U exp (−iα) = V
dζ

dz

∣∣∣∣∞ , (2)

where
dz

dζ
=
c

4

(
eiα − 1

eiα ζ2

)
. (3)

When the values of Γ , Q1, δ1, Q2 and δ2 are known, the pressure distribution on the
upstream surface of the plate is determined through Bernoulli’s equation,

Cp =
2(p− p∞)

ρU2
= 1−

∣∣∣∣W (ζ)

U

dζ

dz

∣∣∣∣2 , (4)

from which the sectional drag FD on the plate in dimensionless form is found by
integration,

Cd =
2FD
ρU2 c

=
sin α

c

∫ c

0

(Cp − Cpbα) dy, (5)

where Cpbα is the base pressure at inclination α.
The local boundary conditions applied to the leading edge, ζ = exp (i[π− α]), and
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Figure 1. Variations of Strouhal numbers with flat-plate inclination α from FJ. •, S; ◦, S∗∗.

trailing edge, ζ = exp (−iα), are

W (ζ) = 0, (6)

and

Cp(z) = Cpbα, (7)

where z = 0 and c. Equations (6) and (7) provide a total of four conditions.
The base pressure behind the plate is associated with the downstream periodic

vortex shedding. In the theory of YP, it was incorporated into the wake width
measured in the direction normal to the uniform flow far upstream as

D∗ =
√

1− Cpbα c g(α), (8)

where g(α) = sin α. D∗ was proposed after examining the experimental data of
Abernathy (1962). As indicated in figure 2 of YP, the modified Strouhal number
based on D∗,

S∗∗ =
nD∗√

1− Cpbα U , (9)

where n is the frequency of vortex shedding, is identical to the conventional Strouhal
number based on projected plate width and is nearly a constant within the range 30◦ 6
α 6 90◦. Further independent evidence in demonstrating that D∗ is the appropriate
wake width is depicted in figure 1, where the measurements of FJ are used to compare
the variations of S = nc/U and S∗∗ over 24◦ 6 α 6 90◦. Based on the continuity
equation and D∗, the fifth boundary condition evolved is

Q1 + Q2

2Q
=
kα sin α

k90◦
, (10)

where kα =
√

1− Cpbα.
To eliminate the empirical input of base pressure, an additional boundary condition

is needed. By the momentum equation, the drag coefficient of a symmetrical body
was given by Eppler as

Cd = −CpbαD
c
, (11)

where D is the wake width also measured in the direction perpendicular to the
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Figure 2. Variations of (a) base pressure and (b) drag with α for inclined flat plate. ◦, FJ;
——, present work; – – –, Wu (1962).

upstream flow. Setting D = D∗, (11) becomes

Cd = (k2
α − 1)kα sin α. (12)

Therefore, the values of Γ ,Q1, δ1, Q2, δ2 and Cpbα are obtained by solving (6), (7), (10)
and (12) simultaneously with the drag coefficient provided by (5).

The uniform flow past a normal flat plate was considered in PJ, and with α = 90◦
(10) is reduced to an identity, providing no additional information on the unknowns.
By symmetry, however, Γ = 0, Q1 = Q2 = Q and δ1 = −δ2 = δ, where the source
strength and location are, respectively

Q = 1
2
πU c cos δ, sec δ = kα. (13)

The drag coefficient derived in PJ is

Cd = 3− π cos δ +
cos 2δ

sin δ
ln

[
1 + cos δ + sin δ

1 + cos δ − sin δ

]
+ tan2 δ. (14)

Equations (12), (13) and (14) are solved simultaneously to give Cpbα = −1.385 and
Cd = 2.139, compared to the experimental values Cpbα = −1.38 and Cd = 2.13 from
FJ. The corresponding pressure distribution is indistinguishably close to the results
reported in figure 3 of PJ.

The above theoretical values of Cpbα and Q for α = 90◦ may be used in (10)
when considering cases where α < 90◦. The lack of symmetry, however, requires Q1,
Q2, δ1, δ2, Γ and Cpbα to be determined simultaneously and iteratively by solving
transcendental equations (6), (7), (10) and (12), which may involve the numerical
integration to obtain Cd by using (5). The predicted values of Cpbα and Cd with
respect to α are shown in figures 2(a) and 2(b) respectively, and agree reasonably
well with the experimental data from FJ. A discussion on the validity of FJ’s data is
provided in a later section. The corresponding variation of wake width D/c with α
is depicted in figure 3, which also includes the measurements of ‘separation between
free-vortex layers’ for the case of minimum blockage by Abernathy and the wake
width calculated by FJ, using von Kármán’s stability relation and the measured values
of the vortex spacing. Figure 4 indicates that at given values of α, Cd/ sin α is a simple
cubic function of kα, as expressed in (12). Because of the close agreement between
the experimental and theoretical values of Cpbα, the predicted pressure distributions
at α = 69.85◦, 49.85◦, 29.85◦, 14.85◦ (i.e. figures 3 to 6 in YP) remain unchanged.

Using the free-streamline theory, the drag coefficient for the fully developed wake
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Figure 3. Variations of wake width with α for inclined flat plate. ◦, Abernathy (1964); +, FJ;
——, present work; – – –, Wu (1962).
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Figure 4. Variations of Cd/g(α) with base pressure for inclined flat plate. ◦, FJ;
——, present work.

flows and cavity flows past an oblique flat plate was derived by Wu (1962) and is
almost identical to that of (14) as shown in figure 5 for α = 90◦ and −2 < Cpb < 0.
The intersection at about Cpbα = −1.385 and Cd = 2.139 was obtained when (12)
was incorporated in Wu’s result. At any other inclination, the theoretical variation
of Cpbα can be found iteratively and is shown in figure 2(a), while the predicted drag
coefficient is included in figure 2(b). The corresponding wake width, which is also
related to the drag coefficient and base pressure through (11), is shown in figure
3. In general, the variations of Cpbα, Cd and wake width are in good agreement
with the present model and data from FJ and Abernathy. Two other points of
intersection are found in figure 5 near (Cpb, Cd) = (−0.96, 1.74) and (−1.051, 1.503),
corresponding to solutions obtained by matching von Kármán’s drag coefficient (see
Roshko 1954b, 1955 where the width of the vortex street is equated to D∗) with
(14) and (12), respectively. In brief, Eppler’s drag equation together with D∗ is more
realistic in predicting the base pressure and drag. It should be noted that using the
free-streamline theory, Wu independently derives an expression similar to (11) for a
flat plate at an arbitrary inclination. Therefore, although (11) was originally obtained
by Eppler for a symmetrical body, its extension to non-symmetrical bodies is justified.
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Figure 5. Comparison of theoretical drag for normal flat plate. ——, PJ; – – –, Wu (1962);
– · – · –, Kármán; · · · · · ·, present work.
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Figure 6. Conformal mapping for symmetrical wedge of angle 2β.

3. Wedges
The symmetric flow around a 90◦-wedge was also considered by PJ. The wake-

source model is easily extended to include a wedge of an arbitrary vertex angle 2β as
shown in figure 6 with h being the base height, when utilizing the Schwarz–Christoffel
transformation

dz

dζ
= m

(
ζ − 1

ζ + 1

)β/π
ζ − d
ζ − 1

. (15)

The upper half-ζ-plane, cut along ABC where ζA = −1, ζB = d = 1 − 2β/π and
ζC = 1, is mapped onto the upper z-plane with zA = 0 and zC = 0. Upon integration
with point B located at zB = h(cot β + i)/2, (15) becomes

z = m(ζ + 1)a (ζ − 1)b, (16)

where a = 1 − b, b = β/π and m = h a−a b−b/(4 sin β). At 2β = 90◦, (15) is identical
to equation (5.1) in PJ, while (16) is much simpler than their (5.2). Following the
formulation in PJ, the strength and location of the double source are then given by

Q = πmU(ε− d), (17)

ε = d+
m

pkβ
, (18)
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Figure 7. Comparison of theoretical drag for wedge of angle 2β. ——, Present work;
– – –, Wu & Wang (1964).

where p =
∣∣d2z/dζ2

∣∣ at ζ = d and kβ =
√

1− Cpbβ . The pressure distribution on the
wetted surface of the wedge is

Cp = 1−
∣∣∣∣(1 +

m

pkβ(ζ − ε)
)

dζ

dz

∣∣∣∣2 , (19)

and the drag coefficient is given by

Cd = 2

∫ h/2

0

(Cp − Cpbβ) dy. (20)

In figure 7, the variations of Cd from the present model over a wide range of base
pressure at β = 10◦, 30◦ and 60◦ are quite close to those from Wu & Wang, which
have been found to be in remarkable agreement with the experimental results of Waid
(1957) and others for cavity flow. To eliminate the empirical input of base pressure,
the theoretical wake with D∗, not necessarily the same as (8) because of the change
of flow structure, is to be determined.

Based on a universal Strouhal number devised by Calvert (1967) on axisymmetric
bodies, Simmons (1977) found that the modified Strouhal number defined as

SCA =
n lW√

1− Cpbβ U , (21)

where lW is ‘the distance apart of the root mean square peaks in velocity found
in a traverse made at right angles across the wake in line with the point of
minimum pressure on the wake centre line’, remained a constant for a number
of two-dimensional wedge-shaped bodies with the boundary-layer separation angle
at β = 0◦, 10◦, 15◦, 20◦, 30◦, 60◦ and 90◦. Similar to the flow around an inclined flat
plate, (21) strongly suggests that lW of the wedge is similar to D∗ of the flat plate. It
is, therefore, assumed that for the wedge

D∗ =
√

1− Cpbβ h g(β), (22)

where g(β) may be derived by studying SCA and S = n h/U. By comparing the
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orientations of the separation streamlines of the inclined flat plate and of the wedge,
g(β) may take the general form

g(β) = A+ B sin (Cβ + D), (23)

where A,B, C and D are constants. By symmetry, the flow structure at 0 < β < 90◦
and 90◦ < β < 180◦ are repeated at −90◦ < β < 0 and −180◦ < β < −90◦,
respectively. Therefore, g(β) = g(β + 2π) is deduced and it leads to the requirement
that C = ±1,±2, . . . . From the variation of SCA/S with β in figure 8, dg/dβ ≈ 0
as β → 0 and 90◦. Therefore, C = 2 and D = π/2, if the smallest positive value
of C is chosen. In addition, g(β = 90◦) should be identical to g(α = 90◦). When
β = 90◦, Simmons’ data however indicate that g(β) ≈ 1.055, which is slightly higher
than g(α) = 1 for the flat plate at α = 90◦. To be consistent with the results of the flat
plate, g(β) = 1 at β = 90◦ is adopted and it leads to

g(β) = 1− B − B sin (2β + 1
2
π). (24)

The variation of g(β) for a few values of B as depicted in figure 8 suggests that
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B = 0.16 is an appropriate choice. In figure 9(a), both SCA and S∗∗ = nD∗/kβ U =
S g(β) are compared with S . Further comparisons are made in figure 9(b) where values
of S from Fage & Johansen (1928) for β = 8.9◦ and 90◦, Twigge-Molecey & Baines
(1973) for β = 30◦, Roshko (1954b) for β = 45◦ and Belvins (1984) for β = 135◦ are
plotted with S∗∗, demonstrating that S∗∗ is reasonably constant for a wide range of
apex angle.

By equating the wake width to D∗, the drag coefficient defined in (11) becomes

Cd = (k2
β − 1)kβ g(β), (25)

and it can be combined with (20) to determine Cpbβ . Note that β = 0◦ corresponds to
h = 0 in figure 6 so that this case is not equivalent to that given in Simmons (1975)
and is excluded in the following discussion. The theoretical prediction of Cpbβ in figure
10(a) is in reasonable agreement with data from Simmons (1977) and Twigge-Molecey
& Baines but is quite different from the measurements by Waid (β = 5◦, 15◦, 45◦ and
90◦), and by Roshko (1954b, β = 45◦). However, the base pressure for β = 135◦ in
figure 11 from Belvins is unavailable for comparison. Figures 11(a) to 11(d) show the
predicted pressure distributions at β = 10◦, 15◦, 20◦ and 60◦ when the theoretical base
pressure is used in each case. Additionally, the pressure measurements by Simmons
(1975) and Twigge-Molecey & Baines are compared with the theoretical prediction
at β = 30◦, as depicted in figure 11(e). The values of Cd obtained from (25) are
shown in figure 10(c) with the data from Waid, Simmons (1977), Lindsey (1938) for
β = 15◦, 30◦, 45◦ and 60◦, Roshko (β = 45◦) and FJ (β = 90◦). The variation of the
theoretical wake width D∗ is in reasonable agreement with lW from Simmons (1975),
as shown in figure 10(b). Interestingly, the experimental data from Simmons (1977),
Twigge-Molecey & Baines, Roshko and FJ collapse onto a simple cubic function
between Cd/g(β) and kβ from (25) in figure 12, but the data from Waid show another
trend, suggesting that (25) is suitable for wake flows.

Relation (25) may be readily combined with the free-streamline model by Wu &
Wang where the relationship among Cd, base pressure and vertex angle is available.
The resulting theoretical variations of Cpbβ , Cd and wake width deduced from (11)
are also plotted in figure 10. Similar to the flat plate, the predictions from the
free-streamline model are quite close to the present model.

4. Discussion
As indicated in an added note in FJ, the experimental data for the inclined flat

plate should be corrected for the interference of the wind tunnel. With the blockage
ratio of 1/14 (or 7.2%), the measured values of drag should be reduced by amounts
varying from 13.5% at α = 90◦ to 8% at α = 30◦, as suggested by FJ. Nevertheless,
the ‘uncorrected’ FJ data have been extensively used for comparison with theory in
Roshko (1954), Mimura (1958), Abernathy (1962), Wu (1962), PJ, Kiya & Arie (1977),
Bearman & Fackrell (1975), and YP. Perhaps it is because the base pressure is an
empirical input. Recently, the uncorrected data were, however, considered by Roshko
(1993) as useful input to the numerical simulations by Chua et al. (1990) in which
the calculated base pressure was found to exhibit suction lobes. We should address
the wind tunnel corrections of FJ’s data because deteriorating agreement between the
present theory and experimental might result, if corrections are made.

As noted by Abernathy, his measurements of base pressure for the flat plate were
‘fairly poor’ in comparison with data from FJ for the same blockage ratio. He
attributed it to the effect of the clearance between the plate and the tunnel walls
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Figure 10. Variations of (a) base pressure, (b) wake width and (c) drag with β. •, Twigge-Molecey
& Baines (1973); +, Waid (1957); ◦, Simmons (1977); ∗, Roshko (1954b); ×, Lindsey (1938);
——, present work; – – –, Wu & Wang (1964).

in FJ’s experiments. By using the drag coefficient by Flachsbart (1932), Abernathy
corrected FJ’s value of base pressure at α = 90◦ for end leakage and the resulting
Cpb = −1.55 agrees well with his value at −1.50 (about 3% in difference). Following
Abernathy’s procedure, FJ’s pressure distribution on the plate may be corrected for
leakage and a drag coefficient of 2.27 is obtained by integrating the resulting pressure
coefficient. To correct for the blockage effects, the well-known method of Allen &
Vincenti (1944) may be used. The pertinent formulas, as quoted by Roshko (1961)
for flow past a circular cylinder at high Reynolds number, are

Cp = 1 +

(
V ′

V

)2

(C ′p − 1), (26)

V

V ′
= 1 +

C ′d
4

(
d

h

)
+ 0.82

(
d

h

)2

, (27)

Cd

C ′d
= 1− C ′d

2

(
d

h

)
− 2.5

(
d

h

)2

, (28)

where d/h is the blockage ratio, V , Cp and Cd are the corrected values of velocity,
pressure and drag coefficients, and V ′, C ′p and C ′d are the corresponding measured
values. Taking d/h = 1/14, C ′d = 2.27 and C ′p = −1.55, it was found that Cp = −1.33
and Cd = 2.06, about 4% and 3% different from the respective uncorrected data from
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Figure 12. Variations of Cd/g(β) with base pressure. •, Twigge-Molecey & Baines (1973);◦, Simmons (1977); ∗, Roshko (1954b); +, Waid (1957); ×, FJ; ——, present work.

FJ. From an independent investigation by Simmons (1977) with a blockage ratio
of 3.5%, the base pressure coefficient was about −1.37, which is quite close to the
uncorrected and corrected values of FJ. As a result, the uncorrected measurements
of FJ’s data are suitable for comparison with theory, even though the base pressure
is not an empirical input.

It is interesting to note that the mean values of the modified Strouhal number S∗∗
based on the proposed wake width D∗ are of the same order of magnitude, namely
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0.15 from figure 1, 0.164 (see figure 2 of YP), 0.161 from figure 9(a) and 0.156 figure
9(b). In addition, they are, incidentally, close to the values of the universal Strouhal
number S∗ = 0.164 by Roshko (1954b), and SCA = 0.163 by Simmons (1977), among
others. It is, however, not the intention here to define another universal Strouhal
number, which should be independent of Reynolds number and geometry.

The present study suggests that the proposed wake width, which is related to the
separation velocity, sufficiently represents the mean properties of wake dynamics and
thus provides a link between the wake and the separation condition because the
resulting modified Strouhal number is independent of the change of flow structure.
On the other hand, the momentum equation for separated flow by Eppler combines
the drag from reliable potential flow models with such a wake width to produce
realistic predictions of the base pressure, drag and wake width. It is of interest to
extend the present work to two-dimensional bodies of continuous curvature over
which flow separation is induced by boundary layers, such as a circular cylinder.
Williamson (1996) recently presented a detailed overview on the vortex dynamics
phenomena in the wake of a circular cylinder, over a wide range of Reynolds
numbers. Extensive experimental results concerning the variations of base pressure
(e.g. Roshko 1993), Strouhal number (e.g. Bearman 1969; Schewe 1983; Williamson
& Roshko 1990) and drag (e.g. Roshko 1961; Schewe 1983) with respect to Reynolds
number are available. However, detail and consistent measurements of the angle of
flow separation are limited (e.g. Achenbach 1968; James, Paris & Malcolm 1980).
Furthermore, the presence of separation bubbles, effects of surface roughness and
the three-dimensional aspects of nominally two-dimensional wake flows may provide
more complications in linking the wake and the separation condition.
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